Extreme genetic structure in a social bird species despite high dispersal capacity.

نویسندگان

  • Francisco Morinha
  • José A Dávila
  • Estela Bastos
  • João A Cabral
  • Óscar Frías
  • José L González
  • Paulo Travassos
  • Diogo Carvalho
  • Borja Milá
  • Guillermo Blanco
چکیده

Social barriers have been shown to reduce gene flow and contribute to genetic structure among populations in species with high cognitive capacity and complex societies, such as cetaceans, apes and humans. In birds, high dispersal capacity is thought to prevent population divergence unless major geographical or habitat barriers induce isolation patterns by dispersal, colonization or adaptation limitation. We report that Iberian populations of the red-billed chough, a social, gregarious corvid with high dispersal capacity, show a striking degree of genetic structure composed of at least 15 distinct genetic units. Monitoring of marked individuals over 30 years revealed that long-distance movements over hundreds of kilometres are common, yet recruitment into breeding populations is infrequent and highly philopatric. Genetic differentiation is weakly related to geographical distance, and habitat types used are overall qualitatively similar among regions and regularly shared by individuals of different populations, so that genetic structure is unlikely to be due solely to isolation by distance or isolation by adaptation. Moreover, most population nuclei showed relatively high levels of genetic diversity, suggesting a limited role for genetic drift in significantly differentiating populations. We propose that social mechanisms may underlie this unprecedented level of genetic structure in birds through a pattern of isolation by social barriers not yet described, which may have driven this remarkable population divergence in the absence of geographical and environmental barriers.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Combined analyses of kinship and FST suggest potential drivers of chaotic genetic patchiness in high gene-flow populations

We combine kinship estimates with traditional F-statistics to explain contemporary drivers of population genetic differentiation despite high gene flow. We investigate range-wide population genetic structure of the California spiny (or red rock) lobster (Panulirus interruptus) and find slight, but significant global population differentiation in mtDNA (ΦST = 0.006, P = 0.001; D(est_Chao) = 0.02...

متن کامل

Social constraint and an absence of sex-biased dispersal drive fine-scale genetic structure in white-winged choughs.

This study used eight polymorphic microsatellite loci to examine the relative effects of social organization and dispersal on fine-scale genetic structure in an obligately cooperative breeding bird, the white-winged chough (Corcorax melanorhamphos). Using both individual-level and population-level analyses, it was found that the majority of chough groups consisted of close relatives and there w...

متن کامل

Tug of war between continental gene flow and rearing site philopatry in a migratory bird: the sex-biased dispersal paradigm reconsidered.

Nonrandom dispersal has been recently advanced as a mechanism promoting fine-scale genetic differentiation in resident populations, yet how this applies to species with high rates of dispersal is still unclear. Using a migratory species considered a classical example of male-biased dispersal (the greater snow goose, Chen caerulescens atlantica), we documented a temporally stable fine-scale gene...

متن کامل

Fine-scale genetic structure and its consequence in breeding aggregations of a passerine bird.

The pattern of fine-scale genetic structure in a population may reflect current biological processes of the species, such as natal dispersal, the breeding system and demography. We investigated the spatial distribution of nests and fine-scale genetic structure during two breeding seasons in a population of a weakly territorial, flock-living passerine bird, the vinous-throated parrotbill, Parado...

متن کامل

Can Aquatic Plants Keep Pace with Climate Change?

The persistence of species may depend upon their capacity to keep pace with climate change. However, dispersal has been ignored in the vast majority of studies that aimed at estimating and predicting range shifts as a response to climate change. Long distance dispersal (LDD) in particular might promote rapid range shifts and allow species to track suitable habitat. Many aquatic plant species ar...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular ecology

دوره 26 10  شماره 

صفحات  -

تاریخ انتشار 2017